Benchmarking Low-cost Air Quality (PM2.5) Sensors-Examining Their Potential to Complement Existing Pollution-Measurement Frameworks in Pittsburgh

Abhishek Viswanathan, Vasco Xu
Instructor: Dr. Amy Babay
CS 3551: Advanced Topics in Distributed Information Systems

Spring 2020

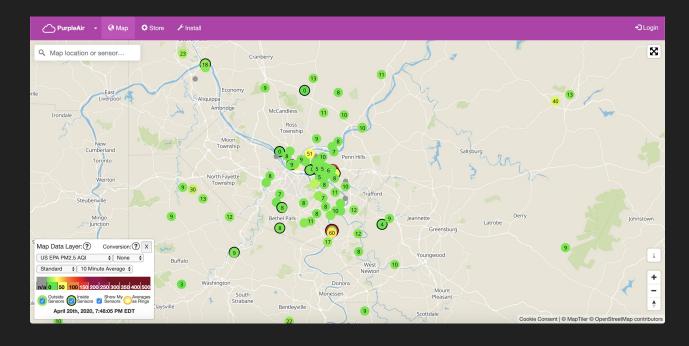
Problem

- Not enough air quality data on local scales
- Uncertainty about accuracy of low-cost sensors
 - If the data is inaccurate, how can we adjust/calibrate its values?
- How to incorporate low-cost sensor data into environmental models
- How to get citizens to participate with easy-to-use devices
- How to automatically visualize citizen-science data

Related Work

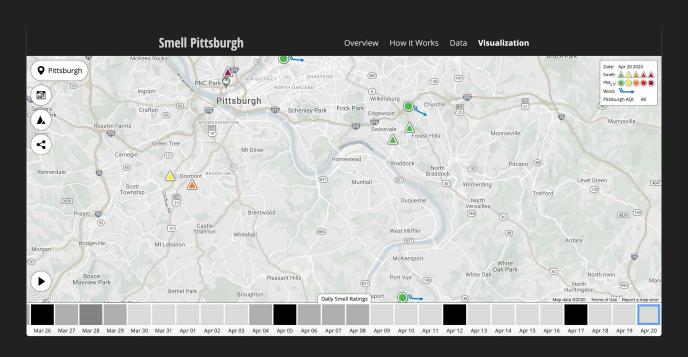
PurpleAir PA-II \$229.00

PurpleAir



Related Work

SmellPGH

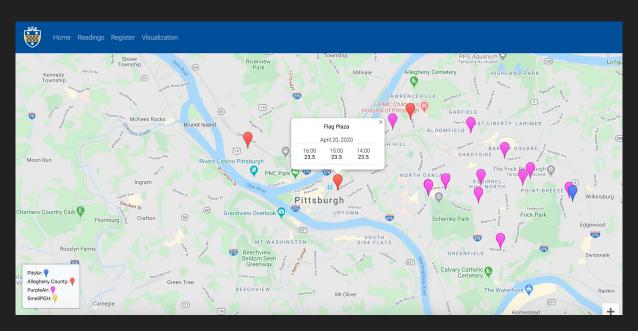


 Built prototype with inexpensive PMS5003 sensor to automatically post data to web server.

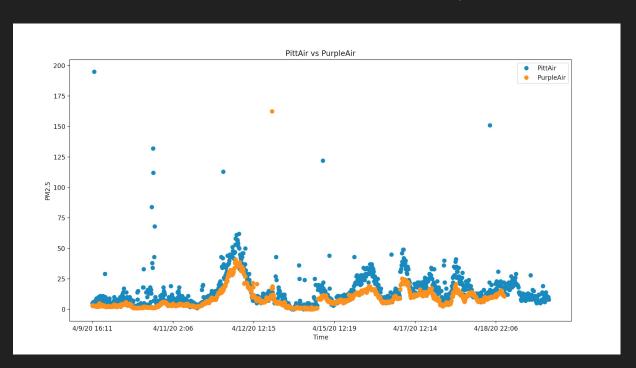
Built web-server hosted on Heroku to receive and store sensor data.

Home Reading	e Readings Register Visualization						
	Device Name	Time	PM0.3	PM0.5	PM1.0	PM2.5	PM10
	Maple	20/04/2020 19:54:18	351	102	1	2	3
	Pine	20/04/2020 19:49:03	348	104	1	2	2
	Maple	20/04/2020 19:44:10	378	104	1	2	2
	Pine	20/04/2020 19:38:54	282	84	1	1	1
	Maple	20/04/2020 19:34:00	264	75	1	1	1
	Pine	20/04/2020 19:28:53	288	76	1	1	1
	Maple	20/04/2020 19:23:59	357	95	2	2	3
	Pine	20/04/2020 19:18:44	288	90	1	2	2
	Maple	20/04/2020 19:13:50	267	83	1	1	2
	Pine	20/04/2020 19:08:42	330	98	1	2	2
		00/04/000040:00:40	004	400	^	^	^

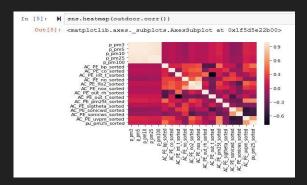
Visualize data from other projects - SmellPGH, PurpleAir, Allegheny County
 Official Data

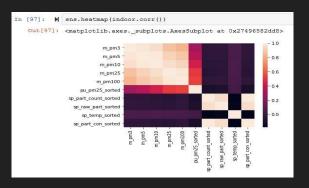


ML + Data Analysis



Analysis





```
In [11]: M from sklearn.metrics import r2_score r2_score (y_test, y_pred)

Out[11]: 0.4977079199997898

In [13]: M from sklearn.ensemble import RandomForestRegressor from sklearn import metrics

regressor = RandomForestRegressor(n_estimators=1000, random_state=0) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test)

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)))

Mean Absolute Error: 0.33816015625

Mean Squared Error: 0.40376442578125005
Root Mean Squared Error: 0.60354246027509873
```

```
In [11]: M from sklearn.metrics import r2_score r2_score (y_test, y_pred)

Out[11]: 0.6516819916142947

In [16]: M from sklearn.ensemble import RandomForestRegressor from sklearn import metrics

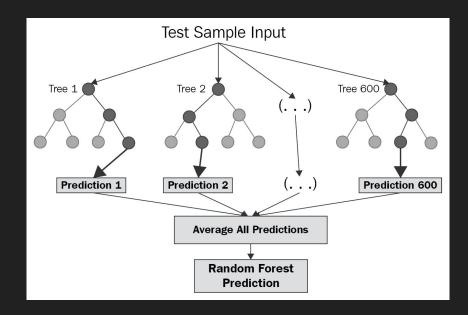
regressor = RandomForestRegressor(n_estimators=1000, random_state=0) regressor.fit(X_train, y_train) 
y_pred = regressor.predict(X_test)

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) 
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)))

Mean Absolute Error: 1.0628529804050742
```

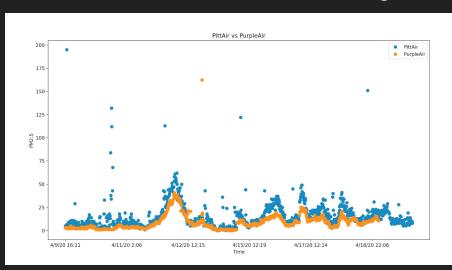
Analysis

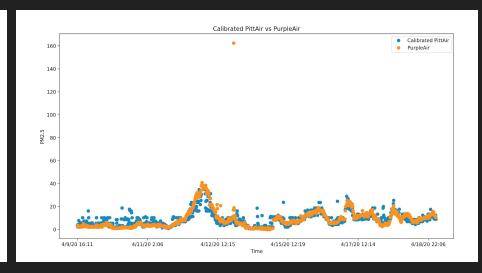
- Random Forest Regression (random forests are run in parallel)
 - Attempts to avoid overfitting.
 - Useful for non-linear data.



Results/Analysis

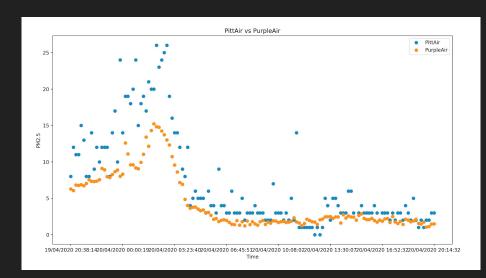
- Left figure: PittAir sensor values (placed inside a house) vs. PurpleAir sensor values (presumably also inside).
- Right figure: Calibrated PittAir sensor with Random Forest Regression ML (of 77% accuracy).
 - Total values used: 1132.
 - 75% of values used for training and 25% used for testing.

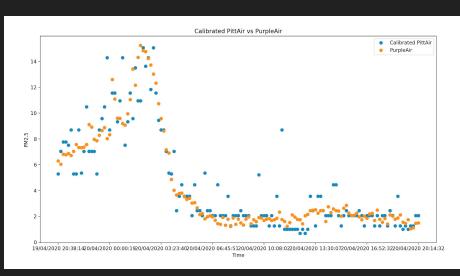




Results/Analysis

- Tested the accuracy of the model by using values not used in building or testing the ML model.
- Left figure: PittAir sensor values vs. PurpleAir sensor values.
- Right figure: Calibrated PittAir sensor values with ML model from previous slide (141 values used).





Future Work

- Improve outdoor models by calibrating near existing sensors hourly and analyzing its accuracy.
- Making collected data available in different formats for analysis.
- Automatically visualize the data on a graph on the website.
- Posting analysis/data automatically to Slack via an API.

Questions?

Thank you!